Главная > Физика > Курс физики. Том II. Учение об электричестве
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 64. Электронная теория магнетизма

После того как Ампер высказал догадку, что никаких «магнитных зарядов» не существует и что намагничивание тел объясняется молекулярными круговыми токами (§§ 57 и 61), прошло почти сто лет, когда, наконец, это предположение было с полной убедительностью доказано прямыми экспериментами. Вопрос о природе магнетизма был решен опытами в области так называемых магнето-механических явлений. Методы осуществления и расчета этих опытов были разработаны на основе развитых Резерфордом в 1911 г. и Бором в 1913 г. представлений о строении атомов (впрочем, некоторые близкие по замыслу эксперименты проводились и раньше, в частности Максвеллом, но безуспешно).

При исследовании явлений радиоактивности Резерфордом было установлено, что электроны в атомах вращаются по замкнутым орбитам вокруг положительно заряженных ядер атомов; Бор показал при теоретическом анализе спектров, что только некоторые из этих орбит устойчивы; наконец, вслед за этим (в 1925 г., также на основе анализа спектров) было обнаружено вращение электронов вокруг своей оси, как бы аналогичное суточному вращению Земли; совокупность этих данных привела к ясному пониманию природы амперовых круговых токов. Стало очевидным, что основными элементами магнетизма в веществах является: или вращение электронов вокруг ядер, или вращение электронов вокруг своей оси, или же оба эти вращения одновременно.

При постановке в 1914-1915 гг. первых успешных магнетомеханических опытов, которые пояснены ниже, вначале предполагалось, что магнитные свойства веществ полностью определяются орбитальным движением электронов вокруг ядер. Однако количественные результаты упомянутых опытов показали, что свойства ферромагнитных и парамагнитных веществ определяются не движением электронов по орбитам, а вращением электронов вокруг своей оси.

Чтобы понять замысел магнетомеханических опытов и правильно оценить выводы, к которым привели эти опыты, нужно вычислить отношение магнитного момента кругового тока, создаваемого движением электрона, к механическому моменту количества движения электрона.

Величина любого тока, как известно, определяется количеством электричества, проходящего через поперечное сечение в единицу времени; очевидно, что величина тока, эквивалентного орбитальному вращению электрона, равна произведению заряда электрона на число оборотов в единицу времени где скорость движения электрона и радиус орбиты. Указанное произведение выражает величину эквивалентного тока в электростатических единицах. Чтобы получить величину тока в электромагнитных единицах, указанное произведение нужно разделить на скорость света (стр. 296); таким образом,

Круговой ток образует такое же магнитное поле, как магнитный листок с моментом, равным произведению тока на обтекаемую им площадь [формула (17)]:

Таким образом, мы видим, что движение электрона вокруг ядра сообщает атому магнитный момент, равный

Сопоставляя этот магнитный момент с механическим моментом количества движения электрона:

находим, что отношение магнитного момента к механическому импульсу не зависит ни от скорости движения электрона, ни от радиуса орбитьи

И действительно, более полная теория показывает, что уравнение (33) является справедливым не только для круговых орбит, но также и для эллиптических орбит электрона.

Вращение электрона вокруг своей оси сообщает самому электрону некоторый магнитный момент. Вращение электрона вокруг своей оси называют спином (от английского слова «спин», означающего вращение вокруг оси). Если предположить, что электрон имеет шарообразную форму и что заряд электрона распределен с равномерной плотностью по сферической поверхности, то вычисления показывают, что отношение спинового магнитного момента электрона к механическому импульсу вращения электрона вокруг своей оси в два раза больше, чем аналогичное отношение для орбитального движения:

Изложенные соображения о пропорциональности магнитного момента и импульса вращения указывают на то, что в известных условиях магнитные явления могут оказаться связанными с гироскопическими эффектами. Эту связь магнитных явлений с гироскопическими эффектами пытался экспериментально обнаружить еще Максвелл, но только Эйнштейну и де Гаазу (1915 г.), А. Ф. Иоффе и П. Л. Капице (1917 г.) и Барнету (1914 г. и 1922 г.) впервые удалось произвести удачные опыты. Эйнштейн и де Гааз установили, что железный стержень, подвешенный в соленоиде в качестве сердечника, при намагничивании током, пропускаемым через соленоид, приобретает импульс вращения (рис. 256). Чтобы получить заметный эффект, Эйнштейн и де Гааз воспользовались явлением резонанса, производя периодическое перемагничивание переменным током с частотой, совпадающей с частотой собственных крутильных колебаний стержня.

Рис. 256. Схема опыта Эйнштейна и де Гааза, а — зеркальце, О — источник света.

Эффект Эйнштейна и де Гааза объясняется следующим образом. При намагничивании оси элементарных магнитов — «электронных волчков» — ориентируются в направлении магнитного поля; геометрическая сумма импульсов вращения «электронных волчков» становится отличной от нуля, а так как в начале опыта импульс вращения железного стержня (рассматриваемого как механическая система атомов) был равен нулю, то по закону сохранения импульса вращения

(т. I, § 38) вследствие намагничивания стержень в целом должен приобрести импульс вращения, равный по величине, но противоположный по направлению геометрической сумме импульсов вращения «электронных волчков».

Барнет произвел опыт, обратный опыту Эйнштейна и де Гааза, а именно, Барнет вызвал намагничивание железного стержня, приведя его в быстрое вращение; намагничивание происходило в направлении, противоположном оси вращения. Подобно тому как вследствие суточного вращения Земли ось гирокомпаса принимает положение, параллельное земной оси (т. I, § 38), точно так же в опыте Барнета оси «электронных волчков» принимают положение-, параллельное оси вращения железного стержня (при этом вследствие того, что заряд электрона отрицателен, направление намагниченности будет противоположно оси вращения стержня).

В опытах А. Ф. Иоффе и П. Л. Капицы (1917 г.) железный намагниченный стержень, подвешенный на нити, подвергался быстрому нагреванию выше точки Кюри. При этом упорядоченное размещение «элементарных волчков», оси которых вследствие намагниченности были ориентированы по полю параллельно оси стержня, утрачивалось и заменялось хаотическим распределением направления осей, так что суммарный магнитный и механический моменты «элементарных волчков» оказывались близкими к нулю (рис. 257). В силу закона сохранения момента количества движения железный стержень при размагничивании приобретал импульс вращения.

Рис. 257. Схема, поясняющая идею опыта Иоффе — Капицы. а — железный стержень намагничен; б - стержень размагничен нагреванием выше точки Кюри.

Измерение магнитного момента и импульса вращения в опытах Эйнштейна и де Гааза, в опытах Барнета и в опытах Иоффе и Капицы, которые были неоднократно повторены многими учеными, показало, что отношение этих величин определяется формулой (34), а не формулой (33). Это указывает на то, что основным элементом магнетизма в железе (и вообще в ферромагнитных телах) является спин — осевое вращение электронов, а не орбитальное движение электронов вокруг положительных ядер атомов.

Однако и орбитальное движение электронов сказывается на магнитных свойствах веществ: магнитный момент атомов, ионов и молекул представляет собой геометрическую сумму спиновых и орбитальных магнитных моментов (впрочем, строение атомов таково, что определяющую роль в этой сумме опять-таки имеют спиновые моменты).

Когда суммарный магнитный момент частицы равен нулю, то вещество оказывается диамагнитным. Формально диамагнитные вещества характеризуются магнитной проницаемостью меньшей, чем единица следовательно, отрицательной магнитной восприимчивостью это означает, что диамагнитные вещества намагничиваются в направлении, противоположном напряженности намагничивающего поля.

Электронная теория объясняет диамагнетизм влиянием магнитного поля на орбитальное движение электронов вокруг ядер. Это движение электрона, как уже было пояснено, эквивалентно току. Когда на атом начинает действовать магнитное поле и напряженность его возрастает от нуля до некоторого значения «индуцируется добавочный ток», который согласно закону Ленца (§ 71) имеет такое направление, что созданный этим «добавочным током» магнитный момент всегда направлен противоположно возросшему от нуля до полю. Если намагничивающее поле перпендикулярно к плоскости орбиты, то оно просто изменяет скорость движения электрона по орбите, и это измененное значение скорости сохраняется все время, пока атом пребывает в магнитном поле; если же поле не перпендикулярно к плоскости орбиты, то возникает и устанавливается прецессионное движение оси орбиты вокруг направления поля (аналогично прецессии оси волчка вокруг вертикали, проходящей через точку опоры волчка) (т. I, § 38).

Вычисления приводят к нижеследующей формуле для магнитной восприимчивости диамагнитных веществ:

здесь заряд и масса электрона, число электронов в атоме, число атомов в единице объема вещества, средний радиус электронных орбит.

Таким образом, диамагнитный эффект является общим свойством всех веществ; однако этот эффект мал, и поэтому он может быть наблюдаем только в том случае, если нет противоположного ему сильного парамагнитного эффекта.

Теория парамагнетизма была разработана Ланжевеном в 1905 г. и развита на основе современных представлений Флеком, Стонером и др. (в 1927 и в последующие годы). В зависимости от строения атома магнитные моменты, создаваемые отдельными внутриатомными электронами, могут или взаимно компенсироваться, так что атом в целом оказывается немагнитным (подобные вещества проявляют диамагнитные свойства), или же результирующий магнитный момент атома оказывается отличным от нуля. В этом последнем случае, как показывает квантовая механика, магнитный момент атома (точнее, его электронной оболочки) закономерно выражается (т. III, §§ 59, 67—70) через своего рода «атом магнетизма» По квантовой

механике этим «атомом магнетизма» является магнитный момент создаваемый вращением электрона вокруг ядра, — магнетон Бора, равный

(здесь заряд электрона, постоянная Планка, с — скорость света, масса электрона).

Точно такой же магнитный момент имеет каждый электрон независимо от его движения вокруг ядра, но вследствие своего строения или, как условно говорят, вследствие своего вращения вокруг оси. Магнитный момент спина равен магнетону Бора, тогда как механический момент спина [в соответствии с формулами (33) и (34)] равен половине орбитального момента электрона.

Некоторые атомные ядра также имеют магнитные моменты, но в тысячи раз меньшие, чем магнитные моменты, присущие электронным оболочкам атомов § 115). Магнитные моменты ядер выражаются через ядерный магнетон, величина которого определяется такой же формулой, как величина магнетона Бора, если в этой формуле заменить массу электрона массой протона.

По теории Ланжевена, при намагничивании парамагнитного вещества молекулы ориентируются своими магнитными моментами по направлению силовых линий поля, но молекулярно-тепловое

движение в той или иной мере расстраивает эту ориентацию. Молекулярная картина намагничивания парамагнитного вещества аналогична поляризации диэлектрика (§ 22), если, конечно, представить себе, что жесткие электрические диполи заменены элементарными магнитиками, а электрическое поле — магнитным полем. О степени ориентации элементарных магнитиков в направлении намагничивающего поля можно судить по величине средней проекции магнитного момента на направление поля (рассчитанной на одну молекулу). При беспорядочном расположении осей элементарных магнитиков когда же все элементарные магнитики ориентированы в направлении поля,

Ланжевен показал, что при температуре и при напряженности внутреннего магнитного поля утр аналогично формуле для в § 22) отношение выражается следующей функцией:

где

При малых значениях как уже упоминалось в § 22, вышеуказанная функция Ланжевена (36) приобретает значение у, так что в этом случае

Очевидно, что намагниченность равна произведению величины на число молекул в единице объема:

Таким образом, при неизменной плотности вещества намагниченность обратно пропорциональна абсолютной температуре. Этот факт эмпирически установлен Кюри в 1895 г.

Для большинства парамагнитных веществ мало в сравнении с единицей, поэтому, подставив в формулу и заменив через можно пренебречь величиной в сравнении с единицей; тогда получаем:

где означает удельную магнитную восприимчивость (т. е. восприимчивость, отнесенную к единице массы). Эта формула носит название закона Кюри. Для многих парамагнетиков более точной является нижеследующая, более сложная форма закона Кюри [формула (31)]:

Величина для некоторых парамагнитных веществ положительна, для других отрицательна.

Парамагнитное вещество при намагничивании втягивается в пространство между полюсами магнита. Следовательно, при намагничивании парамагнитное вещество может производить работу, тогда как на размагничивание работа должна быть затрачена. В связи с этим, как было теоретически предсказано Дебаем, парамагнитные вещества при быстром адиабатном размагничивании должны испытывать некоторое охлаждение (в особенности в той области весьма низких температур, где магнитная восприимчивость парамагнетика сильно возрастает при понижении температуры). Опыты, проведенные с 1933 г. в ряде лабораторий, подтвердили выводы теории и послужили основой для разработки магнитного метода глубокого охлаждения тел. Парамагнитное вещество обычными методами охлаждают в магнитном поле до температуры жидкого гелия, после чего вещество быстро удаляют из магнитного поля, что и вызывает в этом веществе еще большее понижение температуры. Этим методом получают температуры, отличающиеся от абсолютного нуля на тысячные доли градуса.

Характерной особенностью ферромагнитных веществ является то, что в относительно слабых полях они намагничиваются почти до полного насыщения. Стало быть, в ферромагнетиках существуют какие-то силы, которые, преодолевая влияние теплового движения, содействуют упорядоченной ориентации элементарных магнитных моментов. Предположение о существовании внутреннего поля сил, содействующих намагничиванию ферромагнетиков, впервые было высказано русским ученым Б. Л. Розингом в 1892 г. и обосновано П. Вейсом в 1907 г.

В ферромагнитных веществах элементарными магнитами являются вращающиеся вокруг своей оси электроны — спины. В развитие идей Вейса предполагают, что спины, будучи расположены в узлах кристаллической решетки и взаимодействуя друг с другом, создают внутреннее поле, которое в отдельных мелких участках ферромагнитного кристалла (эти участки называют доменами) поворачивает все спины в одну сторону, так что каждый такой участок (домен) оказывается спонтанно (самопроизвольно) намагниченным до насыщения. Однако смежные участки кристалла в отсутствие внешнего магнитного поля имеют неодинаковое направление

намагниченности. Вычисления показывают, что, например, в кристаллах железа «самопроизвольное» намагничивание может происходить в направлении любого ребра кубической кристаллической ячейки.

Слабое внешнее магнитное поле заставляет все спины в домене повернуться в направлении того ребра кубической ячейки, которое составляет наименьший угол с направлением намагничивающего поля.

Рис. 258. Ориентация спинов в доменах при намагничивании ферромагнетика.

Более сильное поле вызывает новый поворот спинов ближе к направлению поля. Магнитное насыщение достигается тогда, когда магнитные моменты всех спонтанно намагниченных микрокристаллических участков окажутся ориентированными в направлении поля. При намагничивании поворачиваются не домены, но все спины в них; все спины в каком-либо микрокристаллике поворачиваются единовременно, как солдаты в строю; этот поворот спинов происходит сначала в одних доменах, потом в других. Таким образом, процесс намагничивания ферромагнитного вещества является ступенчатым (рис. 258).

Экспериментально ступенчатость намагничивания впервые была обнаружена Баркгаузеном (1919 г.). Простейший опыт, пригодный для демонстрации этого явления, заключается в следующем: железный стерженек, вложенный в катушку, соединенную с телефоном, постепенно намагничивают, медленно поворачивая подковообразный магнит, подвешенный над катушкой (рис. 259); при этом в телефоне слышится характерный шорох, который распадается на отдельные удары, если намагничивающее поле изменять достаточно медленно (на сотые доли эрстеда в 1 сек.).

Рис. 259. Опыт Баркгаузена.

Оказалось, что эффект Баркгаузена исключительно велик при намагничивании тонкой никелевой проволоки, которая предварительно была завита в локон протягиванием через блок, а затем вложена в капилляр, удерживающий ее принудительно в выпрямленном состоянии. Прерывистый характер намагничивания сказывается на диаграмме намагничивания в виде мельчайших ступенчатых уступов (рис. 260).

Области самопроизвольного намагничивания — домены — были экспериментально обнаружены и исследованы Н. С. Акуловым, который использовал для этого разработанный им порошковый метод магнитной дефектоскопии. Поскольку домены аналогичны маленьким магнитикам, на границе между ними поле не однородно.

Рис. 260. Ступенчатый характер кривых намагничивания. Участки, отмеченные окружностями, приведены в увеличенном масштабе.

Чтобы выявить очертания доменов, образец размагниченного ферромагнитного вещества помещают под микроскопом и покрывают поверхность образца жидкостью со взвешенной в ней тончайшей железной пылью. Железная пыль, собираясь около границ доменов, четко обозначает их контуры (рис. 261),

Рис. 261. Домены в чистом железе (а), в кремнистом железе (б) и в кобальте (в).

В поясненной выше картине происхождения ферромагнитных свойств некоторое время оставалась невыясненной одна важная часть, а именно природа сил, образующих то внутреннее поле, которое вызывает упорядоченную ориентацию спинов внутри доменов. В 1927 г. советский физик Я. Г. Дорфман осуществил опыт, показавший, что силы внутреннего поля в ферромагнетиках не

являются силами магнитного взаимодействия, а имеют иное происхождение. Выделив узкий пучок из потока быстро движущихся электронов («бета-лучей», выбрасываемых радиоактивными веществами), Дорфман заставил эти электроны проходить через тонкую ферромагнитную пленку никеля; за пленкой никеля была поставлена фотографическая пластинка, позволявшая после проявления определить место встречи с нею электронов, так что можно было с большой точностью измерить угол, на который электроны отклонялись, проходя через намагниченную пленку никеля (рис. 262). Расчет показывает, что если бы внутреннее поле в ферромагнетике имело природу обычных магнитных взаимодействий, то след электронного пучка сместился бы на фотопластинке в установке Дорфмана почти на 2 см; в действительности смещение оказалось ничтожно малым.

Рис. 262. Схема, поясняющая идею опыта Дорфмана.

Теоретические исследования проф. Френкеля (1928 г.) и позже Блоха, Стонера и Слейтера показали, что упорядоченная ориентация спинов в доменах вызывается особого рода силами, существование которых было вскрыто квантовой механикой и которые проявляются при химическом взаимодействии атомов (в ковалентной связи; т. I, § 130). Эти силы, согласно принятому в квантовой механике способу их вычисления и истолкования, называют обменными силами. Вычисления показали, что энергия обменного взаимодействия между атомами железа в монокристалле в сотни раз превышает энергию магнитного взаимодействия. Это согласуется с измерениями, которые были сделаны Я. Г. Дорфманом в упомянутых выше опытах.

Тем не менее практически наиболее важные свойства ферромагнетиков определяются не столько обменным взаимодействием, но преимущественно магнитным взаимодействием. Дело в том, что хотя существование областей «самопроизвольной» намагниченности (доменов) в ферромагнетиках вызывается обменными силами (упорядоченная ориентация спинов соответствует минимальной энергии обменного взаимодействия, т. е. является наиболее устойчивой), но преобладающие направления намагниченности доменов определяются симметрией кристаллической решетки и соответствуют минимуму энергии магнитного взаимодействия. А процесс технического намагничивания, как пояснено выше (рис. 258), заключается в опрокидывании всех спинов внутри отдельных доменов сначала в направлении той кристаллографической оси легкого намагничивания, которая составляет наименьший угол с направлением поля, а потом и в повороте спинов по направлению поля. Затраты энергии, необходимые для осуществления такого ступенчатого опрокидывания спинов поочередно во всех

доменах и поворота их по полю, а также ряд величин, которые зависят от указанных затрат энергии (величин, определяющих намагничивание, магнитострикцию и другие явления), наиболее успешно вычисляются методами, которые разработаны Н. С. Акуловым (с 1928 г.) и Е. Е. Кондорским (с 1937 г.).

Рис. 263. Сопоставление теоретических кривых намагниченности с экспериментальными данными (они показаны кружочками) для монокристалла железа.

Из рис. 263, который мы приводим в качестве одного из примеров, можно видеть, что теоретические кривые, полученные по уравнениям Н. С. Акулова, хорошо согласуются с экспериментальными данными; диаграмма справа представляет намагничивание монокристалла железа в направлении пространственной диагонали кубической решетки, диаграмма слева — то же в направлении диагонали грани куба,

<< Предыдущий параграф Следующий параграф >>
Оглавление