Главная > Физика > Курс физики. Том III. Оптика, атомная физика, ядерная физика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 71. Молекулярные спектры и строение молекул

Кроме спектров, соответствующих излучению отдельных атомов, наблюдаются еще спектры, излучаемые целыми молекулами (§ 61). Молекулярные спектры гораздо разнообразнее и сложнее по своей структуре, чем атомные спектры. Здесь наблюдаются сгущающиеся последовательности линий, похожие на спектральные серии атомов, но с другим законом частот и с настолько близко расположенными линиями, что они сливаются в сплошные полосы (рис. 279). Ввиду своеобразного характера этих спектров они носят название полосатых.

Рис. 279. Полосатый спектр

Наряду с этим наблюдаются последовательности равноотстоящих спектральных линий и, наконец, многолинейчатые спектры, в которых, на первый взгляд, трудно установить какие-либо закономерности (рис. 280). Следует отметить, что при исследовании спектра водорода мы всегда имеем наложение молекулярного спектра На на атомарный спектр, и приходится принимать специальные меры для увеличения интенсивности линий, излучаемых отдельными атомами водорода.

Рис. 280. Молекулярный спектр водорода

С квантовой точки зрения, так же как и в случае атомных спектров, каждая линия молекулярного спектра излучается при переходе молекулы с одного стационарного энергетического уровня на другой. Но в случае молекулы существует гораздо больше факторов, от которых зависит энергия стационарного состояния.

В самом простом случае двухатомной молекулы энергия слагается из трех частей: 1) энергии электронной оболочки молекулы; 2) энергии колебаний ядер атомов, входящих в состав молекулы, вдоль прямой, их соединяющей; 3) энергии вращения ядер вокруг общего центра масс. Все три вида энергии квантованы, т. е. могут принимать только дискретный ряд значений. Электронная оболочка молекулы образуется в результате слияния электронных оболочек атомов, входящих в состав молекулы. Энергетические электронные состояния молекул можно рассматривать как предельный случай

очень сильного эффекта Штарка, вызванного межатомным взаимодействием атомов, образующих молекулу. Хотя силы, связывающие атомы в молекулы, имеют чисто электростатическую природу, правильное понимание химической связи оказалось возможным только в рамках современной волномеханической квантовой теории.

Различают два типа молекул: гомеополярные и гетерополярные. Гомеополярные молекулы при увеличении расстояния между ядрами распадаются на нейтральные части. К числу гемеополярных молекул относятся молекулы Гетерополярные молекулы при увеличении расстояния между ядрами распадаются на положительный и отрицательный ионы. Характерным примером гетерополярных молекул являются молекулы солей, например и т. д. (т. I, § 121, 130, 1959 г.; в пред. изд. § 115 и 124 и т. II, § 19, 22, 1959 г.; в пред. изд. § 21 и 24).

Энергетические состояния электронного облака гомеополярной молекулы определяются в значительной мере волновыми свойствами электронов.

Рассмотрим очень грубую модель самой простой молекулы (ионизированной молекулы водорода представляющую две потенциальные «ямы», находящиеся на близком расстоянии друг от друга и разделенные «барьером» (рис. 281).

Рис. 281. Две потенциальные ямы.

Рис. 282. Волновые функции электрона в случае далеких «ям».

Каждая из «ям» изображает один из атомов, входящих в состав молекулы. При большом расстоянии между атомами электрон в каждом из них обладает квантованными значениями энергии, соответствующими стоячим электронным волнам в каждой из «ям» в отдельности (§ 63). На рис. 282, а и б изображены две одинаковые волновые функции описывающие состояние электронов, находящихся в изолированных атомах. Этим волновым функциям соответствует один и тот же энергетический уровень.

При сближении атомов в молекулу «барьер» между «ямами» становится «прозрачным» (§ 63), ибо его ширина делается соизмеримой с длиной электронной волны. В результате этого возникает

обмен электронами между атомами сквозь «барьер», и теряет смысл говорить о принадлежности электрона тому или иному атому.

Волновая функция теперь может иметь две формы: в и г (рис. 283). Случай в приближенно может рассматриваться как результат сложения кривых а и б (рис. 282), случай как разность а и б, но энергии, соответствующие состояниям в и г, уже не равны точно друг другу. Энергия состояния в несколько меньше энергии состояния Таким образом, из каждого атомного уровня возникают два молекулярных электронных уровня.

Рис. 283. Волновые функции электрона в случае близких «ям».

До сих пор речь шла о ионе молекулы водорода, обладающем одним электроном. В нейтральной молекуле водорода два электрона, что приводит к необходимости учитывать взаимное расположение их спинов. В согласии с принципом Паули электроны с параллельными спинами как бы «избегают» друга, поэтому плотность вероятности нахождения каждого электрона распределена соответственно рис. 284, а, т. е. электроны чаще всего находятся вне промежутка между ядрами. Поэтому при параллельных спинах не может образоваться устойчивая молекула. Наоборот, антипараллельные спины соответствуют наибольшей вероятности нахождения обоих электронов внутри промежутка между ядрами (рис. 294, б). В этом случае отрицательный электронный заряд притягивает к себе оба положительных ядра и вся система в целом образует устойчивую молекулу.

У гетерополярных молекул картина распределения плотности электронного заряда имеет гораздо более классический характер. Около одного из ядер группируется избыток электронов, около другого, наоборот, имеет место недостаток электронов. Таким образом, в составе молекулы образуются два иона, положительный и отрицательный, которые притягиваются друг к другу: в например, и

Символика электронных состояний молекул имеет много сходства с атомной символикой. Естественно, что в молекуле основную роль играет направление оси, соединяющей ядра. Здесь вводится квантовое число А, аналогичное I в атоме. Квантовое число характеризует абсолютное значение проекции на ось молекулы результирующего орбитального момента электронного облака молекулы.

Между значениями и символами молекулярных электронных состояний существует соответствие, аналогичное имеющему место в атомах (§ 67):

Абсолютное значение проекции результирующего спина электронного облака на ось молекулы характеризуют квантовым числом 2, а проекцию полного вращательного момента электронной оболочки — квантовым числом Очевидно, что

Квантовое число аналогично внутреннему квантовому числу атома (§ 59 и 67).

Рис. 284. Плотность вероятности нахождения электрона в различных точках молекулы.

Так же как у атомов, у молекул наблюдается мультиплетность, вызванная различной ориентацией результирующего спина по отношению к результирующему орбитальному моменту.

Учитывая эти обстоятельства, электронные состояния молекул записывают следующим образом:

где 5 — величина результирующего спина, а означает один из символов или А, соответствующих различным значениям квантового числа А. Например, нормальное состояние молекулы водорода есть 2, нормальное состояние молекулы гидроксила есть нормальное состояние молекулы кислорода есть . При переходах между различными электронными состояниями имеют место правила отбора: .

Колебательная энергия молекулы, связанная с колебаниями ядер, квантуется, исходя из учета волновых свойств ядер. Принимая, что ядра в молекуле связаны квазиупругой силой (потенциальная энергия частицы пропорциональна квадрату смещения, § 63), мы из уравнения Шредингера получаем следующие дозволенные значения колебательной энергии этой системы (гармонического

осциллятора):

где частота собственных колебаний ядер, определяемая, как обычно (т. I, § 57, 1959 г.; в пред. изд. § 67):

где приведенная масса ядер; массы обоих ядер; квазиупругая константа молекулы; квантовое число, равное Вследствие большой величины массы частота лежит в инфракрасной области спектра.

Рис. 285. Уровни колебательной энергии молекулы.

Квазиупругая константа зависит от конфигурации электронной оболочки и поэтому различна для различных электронных состояний молекулы. Эта константа тем больше, чем прочнее молекула, т. е. чем сильнее химическая связь.

Формуле (3) соответствует система равноотстоящих энергетических уровней, расстояние между которыми равно На самом деле при больших амплитудах колебаний ядер уже начинают сказываться отступления возвращающей силы от закона Гука. В результате энергетические уровни сближаются (рис. 285). При достаточно больших амплитудах наступает диссоциация молекулы на части.

Для гармонического осциллятора разрешены переходы только при , что соответствует испусканию или поглощению света частоты За счет отступлений от гармоничности появляются переходы, соответствующие

Согласно квантовому условию для частот (§ 58) при этом должны появиться обертоны что и наблюдается в спектрах молекул.

Колебательная энергия представляет собой сравнительно небольшую добавку к энергии электронного облака молекулы. Колебания ядер приводят к тому, что каждый электронный уровень превращается в систему близких уровней, соответствующих различным величинам колебательной энергии (рис. 286). Этим не исчерпывается сложность системы энергетических уровней молекулы.

Рис. 286. Сложение колебательной и электронной энергии молекулы.

Необходимо еще учесть самую небольшую составляющую молекулярной энергии — вращательную энергию. Дозволенные значения вращательной энергии определяются, согласно волновой механике, на основании принципа квантования вращательного момента.

Согласно волновой механике вращательный момент (§ 59) любой квантованной системы равен

в данном случае заменяет и равно 0, 1, 2, 3 и т. д.

Кинетическая энергия вращающегося тела в пред. изд. § 42) будет

где момент инерции, со — угловая скорость вращения.

Но, с другой стороны, вращательный момент равен Отсюда получаем:

или, подставляя вместо выражение (5), окончательно находим:

На рис. 287 изображены вращательные уровни молекулы; в отличие от колебательных и атомных уровней расстояние между вращательными уровнями увеличивается с ростом Между вращательными уровнями разрешены переходы при при этом испускаются линии с частотами

где Евращ соответствует соответствует

Формула (9) дает для частот

где

Рис. 287. Уровни вращательной энергии молекулы.

Мы получаем равноотстоящие спектральные линии, лежащие в далекой, инфракрасной части спектра. Измерение частот этих линий дает возможность определить момент инерции молекулы Оказалось, что моменты инерции молекул порядка Следует заметить, что сам момент инерции I вследствие действия

центробежных сил увеличивается с ростом скорости вращения молекулы. Наличие вращений приводит к расщеплению каждого колебательного энергетического уровня на ряд близких подуровней, соответствующих различным значениям вращательной энергии.

При переходах молекулы из одного энергетического состояния в другое могут одновременно изменяться все три вида энергии молекулы (рис. 288). В результате каждая спектральная линия, испускавшаяся бы при электронно-колебательном переходе, приобретает тонкую вращательную структуру и превращается в типичную молекулярную полосу.

Рис. 288. Одновременное изменение всех трех видов энергии молекулы

Такие полосы из равноотстоящих линий наблюдаются у паров и воды и лежат в далекой инфракрасной части спектра. Наблюдают их не в спектре излучения этих паров, а в их спектре поглощения, ибо частоты, соответствующие собственным частотам молекул, поглощаются сильнее остальных. На рис. 289 приведена полоса в спектре поглощения паров в близкой инфракрасной области. Эта полоса соответствует переходам между энергетическими состояниями, отличающимися уже не только энергией вращения, но и энергией колебаний (при постоянной энергии электронных оболочек). В данном случае и и Екол изменяются одновременно, что приводит к большим изменениям энергии, т. е. спектральные линии имеют большую частоту, чем в первом рассмотренном случае.

В соответствии с этим в спектре возникают линии, лежащие в близкой инфракрасной части, подобно изображенным на рис. 289.

Рис. 289. Полоса поглощения.

Центр полосы ( соответствует переходу при постоянной Евращ; согласно правилу отбора такие частоты не испускаются молекулой. Линии с большими частотами — меньшими длинами волн — соответствуют переходам, при которых изменение Евращ прибавляется к изменению Линии с меньшими частотами (правая часть) соответствуют обратному соотношению: изменение вращательной энергии имеет противоположный знак.

Наряду с такими полосами наблюдаются полосы, соответствующие переходам с изменением момента инерции но с В этом случае, согласно формуле (9), частоты линий должны зависеть от и расстояния между линиями становятся неодинаковыми. Каждая полоса состоит из ряда линий, сгущающихся к одному краю,

который называют головой полосы. Для частоты отдельной спектральной линии, входящей в состав полосы, Деландром еще в 1885 г. была дана эмпирическая формула следующего вида:

где целое число.

Формула Деландра вытекает непосредственно из приведенных выше соображений. Формулу Деландра можно изобразить графически, если по одной оси отложить а по другой (рис. 290).

Рис. 290. Графическое изображение формулы Деландра.

Внизу изображены соответствующие линии, образующие, как мы видим, типичную полосу. Поскольку структура молекулярного спектра сильно зависит от момента инерции молекулы, исследование молекулярных спектров является одним из надежных способов определения этой величины. Малейшие изменения в структуре молекулы могут быть обнаружены при исследовании ее спектра. Наиболее интересным является то обстоятельство, что молекулы, содер жащие различные изотопы (§ 86) одного и того же элемента, должны иметь в своем спектре различные линии, соответствующие различным массам этих изотопов. Это вытекает из того, что массы атомов определяют как частоту их колебаний в молекуле, так и ее момент инерции. Действительно, линии полос хлорной меди состоят из четырех компонент соответственно четырем комбинациям изотопов меди 63 и 65 с изотопами хлора 35 и 37:

Так же были обнаружены линии, соответствующие молекулам содержащим тяжелый изотоп водорода, несмотря на то, что концентрация изотопа в обычном водороде равна

Кроме массы ядер на структуры молекулярных спектров влияют и другие свойства ядер. В частности, очень большую роль играют вращательные моменты (спины) ядер. Если в молекуле, состоящей из одинаковых атомов, вращательные моменты ядер равны нулю, выпадает каждая вторая линия вращательной полосы Такой эффект, например, наблюдается у молекулы

Если вращательные моменты ядер отличны от нуля, они могут вызвать чередование интенсивностей во вращательной полосе, слабые линии будут чередоваться с сильными.)

Наконец, пользуясь методами радиоспектроскопии, удалось обнаружить и точно измерить сверхтонкую структуру молекулярных спектров, связанную а квадрупольным электрическим моментом ядер.

Квадрупольный электрический момент возникает в результате отступления формы ядра от сферической. Ядро может иметь форму вытянутого или сплющенного эллипсоида вращения. Такой заряженный эллипсоид уже нельзя заменить просто точечным зарядом, помещенным в центре ядра.

Рис. 291. Поглощающее устройство «атомных» часов: 1 — прямоугольный волновод сечением длиной закрытый с обеих сторон непроницаемыми для газа переборками 7 и заполненный аммиаком при низком давлении;

2 — кристаллический диод, создающий гармоники подводимого к нему высокочастотного напряжения; 3 — выходной кристаллический диод; 4 — генератор модулированного по частоте высокочасто-ного напряжения; 5 — трубопровод к вакуумному насосу и газгольдеру аммиака; 6 — выход к импульсному усилителю; 7 — переборки; И — индикатор тока кристаллического диода; В — вакуумметр.

Кроме кулоновой силы в поле ядра появляется дополнительная сила, обратно пропорциональная четвертой степени расстояния и зависящая от угла с направлением оси симметрии ядра. Появление дополнительной силы связано с наличием квадрупольного момента у ядра.

Впервые наличие квадрупольного момента у ядра было установлено методами обычной спектроскопии по некоторым деталям сверхтонкой структуры атомных линий. Но эти методы не давали возможности точно определить величину момента.

При радиоспектроскопическом методе волновод наполняют исследуемым молекулярным газом и измеряют поглощение радиоволн в газе. Применение клистронов для генерации радиоволн дает возможность получить колебания с высокой степенью монохроматичности, которые затем модулируются. Особенно подробно был исследован спектр поглощения аммиака в области сантиметровых волн., В этом спектре обнаружена сверхтонкая структура, которая объясняется наличием связи между квадрупольным моментом ядра и электрическим полем самой молекулы.

Принципиальное преимущество радиоспектроскопии состоит в малости энергии фотонов, соответствующих радиочастотам. Благодаря этому по поглощению радиочастот можно обнаружить переходы между чрезвычайно близкими энергетическими уровнями атомов и молекул. Кроме ядерных эффектов метод радиоспектроскопии очень удобен для определения электрических дипольных моментов всей молекулы по эффекту Штарка молекулярных линий в слабых электрических

полях. За последние годы появилось огромное число работ, посвященных радиоспектроскопическому методу исследования структуры самых различных молекул Поглощение радиоволн в аммиаке использовано для построения сверхточных «атомных» часов (рис. 291).

Длительность астрономических суток медленно увеличивается и, кроме того, колеблется в пределах Желательно построение часов с более равномерным ходом. «Атомные» часы представляют собой кварцевый генератор радиоволн с частотой, контролируемой по поглощению генерируемых волн в аммиаке. При длине волны 1,25 см наступает резонанс с собственной частотой молекулы аммиака, чему соответствует очень резкая линия поглощения. Малейшее отклонение длины волны генератора от этой величины нарушает резонанс и приводит к сильному увеличению прозрачности газа для радиоизлучения, что регистрируется соответствующей аппаратурой и приводит в действие автоматику, восстанавливающую частоту генератора. «Атомные» часы уже дали ход более равномерный, чем вращение Земли. Предполагается, что удастся достигнуть точности хода порядка долей суток.

<< Предыдущий параграф Следующий параграф >>
Оглавление